

Stimulating co-digestion in the Netherlands the Dutch case

Bert van Asselt

Contents of the presentation

- Introduction
- Development of co-digestion in the Netherlands (2004-2005)
- Probiogas Dutch case
- Assessment Dutch case
- Growth of co-digestion in the Netherlands (2006-2007)
- Future development of co-digestion

Introduction

- SenterNovem Dutch partner for innovation and sustainable development -Turning policy into reality
- Agency of the Dutch Ministry of Economic Affairs.
- Our core competence is converting government policy into reality.
- On behalf of the Dutch government we implement policy regarding:
 - Innovation
 - Energy and Climate Change
 - Environment and Spatial Planning
- Partner in Probiogas

Development of co-digestion in the Netherlands (summary 2004-2005)

- January 2004: Few digestion plants operational (manure and organic waste)
- June 2004: Ministry of Agriculture presented "Positive list" for co-digestion while digestate remains legally manure
- April 2005: Document legislation of co-digestion plants
- January 2005: Financial stimulation of renewable energy in the Netherlands (MEP)
- January 2006: 30 co-digestion plants operational
- August 2006: Financial support stopped

Dutch biogas installations (2004)

(excl. landfill gas and digestion of sewage sludge)

LEGENDA

- biomass firing plants (CHP)
- Gasification plant
- manure co-digesters
- Organic waste digesters
- co-firing plants

Dutch case study: Basics

- Region: south part of the Netherlands (near the city of Eindhoven)
 - livestock intensive area
- Characteristics (region)
 - manure (cattle and pig) 2.5 million ton/a
 - poultry manure (110 kton/a)
 - crops (4,650 ha)
 - organic community waste (150 kton/a)
 - wood (35 kton/a)
 - industrial organic waste?
- Potential bio-energy (2.4 PJ ~ 0.7 million MWh)

Case description

- Centralized Anaerobic Digestion plant: 220,000 tonnes
 - Cattle manure
 - Pig manure
 - Poultry manure
- Cooperation of 30 farmers
- Characteristics
 - 600 tonnes/day
 - thermophillic temperatures (52-55 °C)
 - sanitation step (70 °C)
 - CHP production 3.5 MW electricity
 - no industrial organic waste

Activities (Dutch case)

- Organizing a meeting project-group Eindhoven area
- Check use digestate as fertilizer
- Inform local farmers
- Meetings with local authorities and members project group
- Assessment case study (mid 2006)
- Presenting results of Danish study
- Supporting other co-digestion projects

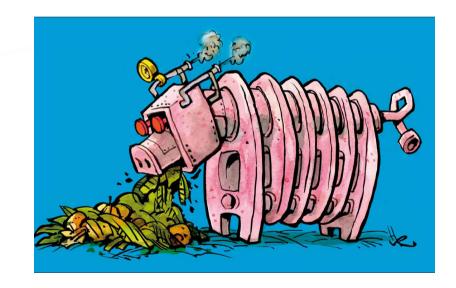
Assumptions assessment study

Capacity CAD-plant (tonnes per year)	220,000
Investment costs CAD-plant, € (millions)	6.13
Investment costs CHP facility (3.5 MWe), € (millions)	2.112
Required storage capacity solid/liquid manure in months, reference	11
Price, electricity sold, € per kWh	0.06
Price, electricity purchased for process purposes, € per kWh	0.2
Price, heat sold, € per MWh	0
Treatment fee, organic waste, € per tonne	0
Capacity of trucks in use, tones	40
Average distance from farm to CAD plant, km	20
Average distance, long distance transport, km	100

Profitability CAD-plant (€ x 1,000)

Electricity sales	1,372
Heat sales / Treatment fees	0
Sales in total	1,372
Electricity purchase for process	-236
Maintenance and Sand removal (-300) and (-6)	-306
Insurance	-22
Other costs and Premises (-43) and (-16)	-59
Staff costs and Administration (-124 and -54)	-178
Capital costs	-595
Costs in total	-1,396
Net result of the plant	-24

conomic results Biogas plant: Costs and benefits Noord-Brabant region, The Netherlands.Bas					
Costs (levellised annuity)	Result 0	Result 1	Result 2	Result 3	
		mic	.EUR/year		
Invesments:					
Biogas-plant	0.574	0.574	0.574	0.574	
Transport materiel	0.000	0.000	0.000	0.000	
CHP-plant	0.184	0.184	0.184	0.184	
Operation and maintenance:					
Biogas production / biogas plant	0.566	0.566	0.566	0.566	
Transport materiel	0.071	0.071	0.071	0.07	
Sum:	1.395	1.395	1.395	1.39	
Benefits (levellised annuity)	Result 0	Result 1	Result 2	Result 3	
		mic	.EUR/year		
Energy production:					
Biogas sale	0.000	0.000	0.000	0.000	
Electricity sale	0.785	0.785	0.785	0.78	
Heat sale	0.000	0.000	0.000	0.000	
Agriculture:					
Storage and handling of liquid manure		-0.037	-0.037	-0.037	
Value of improved manurial value (NPK))	0.308	0.308	0.308	
Distribution of liquid manure		-1.374	-1.374	-1.374	
Transport savings at farms		1.066	1.066	1.066	
Veterinary aspects				n.a	
Industry: Savings related to organic waste treatm	ent	0.000	0.000	0.000	
Environment: Value of GHG reduction (CO ₂ , CH ₄ , N ₂ C)-reduction)	0.631	0.63	
		,			
Value of reduced N-eutrophication of gro	buria water	•	0.347	0.347	
Value of reduced obnoxious smells				0.108	
Sum:	0.785	0.747	1.725	1.833	
	Result 0	Result 1	Result 2	Result 3	
Difference as appuitus Panafita, acata	0.640		.EUR/year	0.404	
Difference as annuity: Benefits - costs	-0.610	-0.648	0.330	0.438	


Conclusions assessments

- Good preconditions for CAD plant (manure surplus situation)
- Less transport costs (farmers delivering manure)
- Less use of fertilizer (farmers receiving digested manure)

Improvements (assessment)

- Electricity price is low (EUcontext)
- No heat utilisation
- No organic waste is codigested (increasing biogas production)

Results (Dutch case)

- Project put on HOLD
 - Financial support stopped (18th of August 2006)
- Other aspects
 - Location of the plant
 - Technology of manure treatment

Example of a Dutch co-digestion plant

Capacity 36,000 ton manure

Electrical power 440 kW

Thermal power 600 kW

Electricity production

~ 3,5 million kWh per annum

Dimensions:

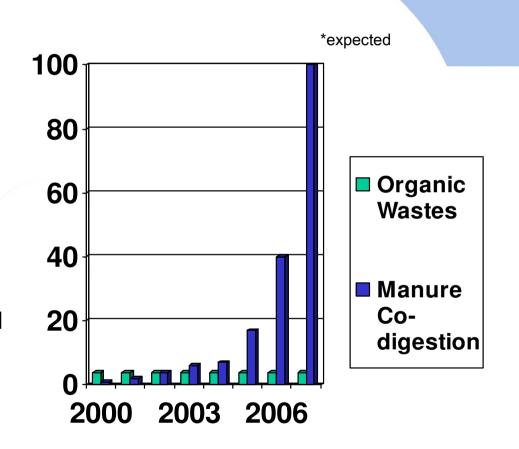
3x 800 m3 digester

3.000 m3 storage

Total investment € 2.000.000

Pay-back time 8 years

Maize digester (36,000 ton/year)


ProBiogas - The Dutch case

15 June Esbjerg

Growth of Manure Digestion through co-digestion

- Now also 100% maize digestion possible
- Financial support stopped
- End 2006: 40 installations, 20
 MWe
- 2007, additional call: 32.6 M€/yr (10yr contracts) for 40 MWe
 60 plants in preparation
- 2008, new governmental financial support system (wider focus towards renewable energy
- ~ 200 plants in planning

Dutch biogas installations (2007)

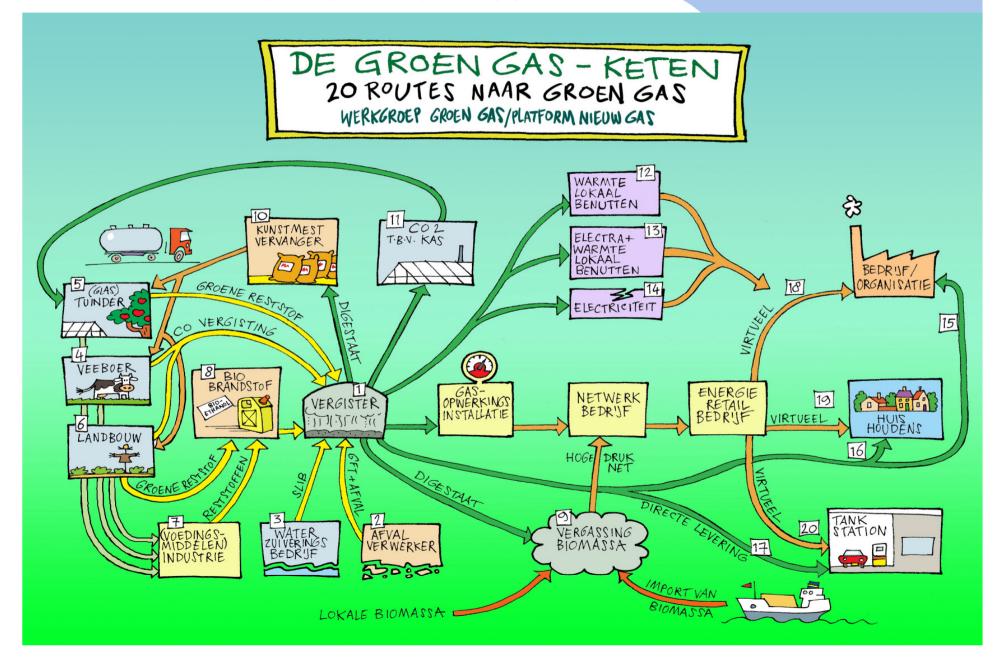
(excl. landfill gas and digestion of sewage sludge)

LEGENDA

- biomass firing plants (CHP)
- Gasification plant
- manure co-digesters
- Organic waste digesters
- co-firing plants

Dutch objectives renewable energy

- Old policy up to 2010: 9% production from used electricity and 10% of total energy use in 2020 5,75% biofuel obligation
- New policy up to 2020 20% renewable energy 30% emission reduction of green house gases (ref. 1990) 2% energy saving yearly



Items in developments on biogas

- Energy crop production
- Mono-digestion without manure
- Process control systems (Germany and Denmark)
- Quality of silage
- Sustainability of biogas production
- Utilization of produced heat in CHP
- Biogas upgrading (production of green gas)
- Biogas as transport fuel

Integral green gas approach

Thank you for your attention

more information:

http://www.senternovem.nl/ http://www.senternovem.nl/duurzameenergie/index.asp